

[image: Logo for cayenne]

Logo for cayenne

cayenne : Python package for stochastic simulations

[image: Travis Build Status] [https://travis-ci.com/Heuro-labs/cayenne] [image: Azure Build Status] [https://dev.azure.com/srikiranc/cayenne/_build] [image: codecov] [https://codecov.io/gh/Heuro-labs/cayenne] [image: Updates] [https://pyup.io/repos/github/Heuro-labs/cayenne/]
[image: Documentation Status] [https://cayenne.readthedocs.io/en/latest/?badge=latest] [image: pypi] [https://pypi.python.org/pypi/cayenne] [image: License] [image: Code style: black] [https://github.com/ambv/black] [image: Gitter chat] [https://gitter.im/cayenne-package]

Introduction

cayenne is a Python package for stochastic simulations. It offers a
simple API to define models, perform stochastic simulations with them
and visualize the results in a convenient manner.

Currently under active development in the develop branch.

Install

Install with pip:

$ pip install cayenne

Documentation

	General: https://cayenne.readthedocs.io.

	Benchmark repository, comparing cayenne with other stochastic
simulation packages: https://github.com/Heuro-labs/cayenne-benchmarks

Usage

A short summary follows, but a more detailed tutorial can be found
here [https://cayenne.readthedocs.io/en/latest/tutorial.html]. You
can define a model as a Python string (or a text file, see
docs [https://cayenne.readthedocs.io]). The format of this string is
loosely based on the excellent
antimony [https://tellurium.readthedocs.io/en/latest/antimony.html#introduction-basics]
library, which is used behind the scenes by cayenne.

from cayenne.simulation import Simulation
model_str = """
 const compartment comp1;
 comp1 = 1.0; # volume of compartment

 r1: A => B; k1;
 r2: B => C; k2;

 k1 = 0.11;
 k2 = 0.1;
 chem_flag = false;

 A = 100;
 B = 0;
 C = 0;
 """
sim = Simulation.load_model(model_str, "ModelString")
Run the simulation
sim.simulate(max_t=40, max_iter=1000, n_rep=10)
sim.plot()

[image: Plot of species A, B and C]

Plot of species A, B and C

Change simulation algorithm

You can change the algorithm used to perform the simulation by changing
the algorithm parameter (one of "direct", "tau_leaping" or
"tau_adaptive")

sim.simulate(max_t=150, max_iter=1000, n_rep=10, algorithm="tau_leaping")

Our benchmarks [https://github.com/Heuro-labs/cayenne-benchmarks]
are summarized below, and show direct to be a good
starting point. tau_leaping offers greater speed but needs
specification and tuning of the tau hyperparameter. The
tau_adaptive is less accurate and a work in progress.

Run simulations in parallel

You can run the simulations on multiple cores by specifying the
n_procs parameter

sim.simulate(max_t=150, max_iter=1000, n_rep=10, n_procs=4)

Accessing simulation results

You can access all the results or the results for a specific list of
species

Get all the results
results = sim.results
Get results only for one or more species
results.get_species(["A", "C"])

You can also access the final states of all the simulation runs by

Get results at the simulation endpoints
final_times, final_states = results.final

Additionally, you can access the state a particular time point of
interest \(t\). cayenne will interpolate the value from nearby
time points to give an accurate estimate.

Get results at timepoint "t"
t = 10.0
states = results.get_state(t) # returns a list of numpy arrays

Benchmarks

	
	direct

	tau_leaping

	tau_adaptive

	cayenne

	:he
avy_check_mark:
Most accurate
yet

	:he
avy_check_mark:
Very fast but
may need manual
tuning

	Less accurate
than
GillespieSSA’s
version

	Tellurium

	
	exclamation

	

Inaccurate for
2nd order

	N/A

	N/A

	GillespieSSA

	Very slow

	
	exclamation

	

Inaccurate for
initial zero
counts

	
	exclamation

	

Inaccurate for
initial zero
counts

	BioSimulator.jl

	
	exclamation

	

Inaccurate
interpolation

	
	exclamation

	

Inaccurate for
initial zero
counts

	
	exclamation

	

Inaccurate for
initial zero
counts

License

Copyright (c) 2018-2020, Dileep Kishore, Srikiran Chandrasekaran.
Released under: Apache Software License 2.0

Credits

	Cython [https://cython.org/]

	antimony [https://tellurium.readthedocs.io/en/latest/antimony.html]

	pytest [https://docs.pytest.org]

	Cookiecutter [https://github.com/audreyr/cookiecutter]

	audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage]

	black [https://github.com/ambv/black]

	Logo made with logomakr [https://logomakr.com/]

 CLICK

 Tutorial

Tutorial

Model Building

Consider a simple system of chemical reactions given by:

\[\begin{split}A \xrightarrow[]{k_1} B\\
B \xrightarrow[]{k_2} C\\\end{split}\]

Suppose k0.11 = 1, k0.1 = 1 and there are initially 100 units of A. Then we have the following model string

>>> model_str = """
 const compartment comp1;
 comp1 = 1.0; # volume of compartment

 r1: A => B; k1; # differs from antimony
 r2: B => C; k2; # differs from antimony

 k1 = 0.11;
 k2 = 0.1;
 chem_flag = false;

 A = 100;
 B = 0;
 C = 0;
 """

The format of the model string is based on a subset of the antimony modeling language [https://tellurium.readthedocs.io/en/latest/antimony.html#introduction-basics], but with one key difference. Antimony allows the user to specify custom rate equations for each reaction. cayenne automagically generates the rate equations behind the scenes, and user need only supply the rate constants. The format is discussed below:

Model format

const compartment comp1;

This defines the compartment in which the reactions happen.:

comp1 = 1.0;

This defines the volume of the compartment in which reactions happen. For zero and first order reactions, this number does not matter. For second and third order reactions, varying compartment volume will affect the kinetic outcomes even when the rest of the model is not changed. A blank line after this separates these definitions from the reactions.:

r1: A => B; k1; # differs from antimony
r2: B => C; k2; # differs from antimony

Here r1 and r2 refer to the names of the reactions. This is followed by a colon and the reactants in that reaction. In r1 there is only one reactant, A. Additional reactants or stoichiometries can be written like A + 2B. This is followed by a => which separates reactants and products. Products are written in a fashion similar to the reactants. A semi-colon indicates the end of the products. This is followed by a symbol depicting the rate constant e.g. k1, and the reaction ends with a second semi-colon. A blank line after this separates these reactions from rate-constant assignments.:

k1 = 0.11;
k2 = 0.1;

The rate constants are assigned one per line, with each line ending in a semi-colon. Every rate constant defined in the reactions must be assigned a numerical value at this stage, or cayenne will throw a cayenne.model_io.RateConstantError.:

chem_flag = false;

An additional element that is included at this stage is the chem_flag boolean variable. This is discussed more in detail in the documentation of cayenne.Simulation class under the notes section. Briefly, if

	the system under consideration is a chemical system and the supplied rate constants are in units of molarity or M or mol/L, chem_flag should be set to true

	the system under consideration is a biological system and the supplied rate constants are in units of copies/L or CFU/L, chem_flag should be set to false

A blank line after this separates rate constants from initial values for the species.:

A = 100;
B = 0;
C = 0;

The initial values for species are assigned one per line, with each line ending in a semi-colon. Every species defined in the reactions must be assigned an integer initial value at this stage, or cayenne will throw a cayenne.model_io.InitialStateError.

Warning

Antimony has a set of reserved keywords that cannot be used as species, compartment or variable names, Eg. formula, priority, time, etc. Refer to the antimony documentation [https://tellurium.readthedocs.io/en/latest/antimony.html#language-reference] for more information.

Note

cayenne only accepts zero, first, second and third order reactions. We decided to not allow custom rate equations for stochastic simulations for two reasons:

	A custom rate equation, such as the Monod equation (see here [https://en.wikipedia.org/wiki/Monod_equation] for background) equation below, may violate the assumptions [https://en.wikipedia.org/wiki/Gillespie_algorithm] of stochastic simulations. These assumptions include a well stirred chamber with molecules in Brownian motion, among others.

\[\mu = \frac{\mu_{max}S}{K_S + S}\]

	An equation resembling the Monod equation, the Michaelis-Menten [https://en.wikipedia.org/wiki/Michaelis%E2%80%93Menten_kinetics] equation, is grounded chemical kinetic theory. Yet the rate expression (see below) does not fall under 0-3 order reactions supported by cayenne. However, the elementary reactions that make up the Michaelis-Menten kinetics are first and second order in nature. These elementary reactions can easily be modeled with cayenne, but with the specification of additional constants (see examples). A study shows that using the rate expression of Michaelis-Menten kinetics is valid under some conditions [https://pubmed.ncbi.nlm.nih.gov/21261403/].

\[\frac{dP}{dt} = \frac{\mu_{max}S}{K_S + S}\]

Note

The chem_flag is set to True since we are dealing with a chemical system. For defintion of chem_flag, see the notes under the definition of the Simulation class.

These variables are passed to the Simulation class to create an object that represents the current system

>>> from cayenne import Simulation

>>> sim = Simulation.load_model(model_str, "ModelString")

	
class cayenne.simulation.Simulation(species_names: List[str], rxn_names: List[str], react_stoic: numpy.ndarray, prod_stoic: numpy.ndarray, init_state: numpy.ndarray, k_det: numpy.ndarray, chem_flag: bool = False, volume: float = 1.0)[source]

	A main class for running simulations.

	Parameters

	
	species_names (List[str]) – List of species names

	rxn_names (List[str]) – List of reaction names

	react_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the reactants.
Reactions are columns and species are rows.

	prod_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the products.
Reactions are columns and species are rows.

	init_state ((ns,) ndarray) – A 1D array representing the initial state of the system.

	k_det ((nr,) ndarray) – A 1D array representing the deterministic rate constants of the
system.

	volume (float, optional) – The volume of the reactor vessel which is important for second
and higher order reactions. Defaults to 1 arbitrary units.

	chem_flag (bool, optional) – If True, divide by Na (Avogadro’s constant) while calculating
stochastic rate constants. Defaults to False.

	
results

	The results instance

	Type

	Results

	Raises

	ValueError – If supplied with order > 3.

Examples

>>> V_r = np.array([[1,0],[0,1],[0,0]])
>>> V_p = np.array([[0,0],[1,0],[0,1]])
>>> X0 = np.array([10,0,0])
>>> k = np.array([1,1])
>>> sim = Simulation(V_r, V_p, X0, k)

Notes

Stochastic reaction rates depend on the size of the system for second
and third order reactions. By this, we mean the volume of the system in
which the reactants are contained. Intuitively, this makes sense
considering that collisions between two or more molecules becomes
rarer as the size of the system increases. A detailed mathematical
treatment of this idea can be found in 3 .

In practice, this means that volume and chem_flag need to be
supplied for second and third order reactions. volume
represents the size of the system containing the reactants.

In chemical systems chem_flag should generally be set to True
as k_det is specified in units of molarity or M or mol/L.
For example, a second order rate constant could be = 0.15 mol / (L s).
Then Avogadro’s constant (\(N_a\)) is used for normalization while
computing k_stoc (\(c_\mu\) in 3) from k_det.

In biological systems, chem_flag should be generally be set to
False as k_det is specified in units of copies/L or CFU/L.
For example, a second order rate constant could be = 0.15 CFU / (L s).

References

	3(1,2)

	Gillespie, D.T., 1976.
A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.
doi:10.1016/0021-9991(76)90041-3.

Running Simulations

Suppose we want to run 10 repetitions of the system for at most 1000 steps / 40 time units each, we can use the simulate method to do this.

>>> sim.simulate(max_t=40, max_iter=1000, n_rep=10)

	
Simulation.simulate(max_t: float = 10.0, max_iter: int = 1000, seed: int = 0, n_rep: int = 1, n_procs: Optional[int] = 1, algorithm: str = 'direct', debug: bool = False, **kwargs) → None[source]

	Run the simulation

	Parameters

	
	max_t (float, optional) – The end time of the simulation.
The default is 10.0.

	max_iter (int, optional) – The maximum number of iterations of the simulation loop.
The default is 1000 iterations.

	seed (int, optional) – The seed used to generate simulation seeds.
The default value is 0.

	n_rep (int, optional) – The number of repetitions of the simulation required.
The default value is 1.

	n_procs (int, optional) – The number of cpu cores to use for the simulation.
Use None to automatically detect number of cpu cores.
The default value is 1.

	algorithm (str, optional) – The algorithm to be used to run the simulation.
The default value is "direct".

Notes

The status indicates the status of the simulation at exit. Each
repetition will have a status associated with it, and these are
accessible through the Simulation.results.status_list.

	status: int

	Indicates the status of the simulation at exit.

1: Succesful completion, terminated when max_iter iterations reached.

2: Succesful completion, terminated when max_t crossed.

3: Succesful completion, terminated when all species went extinct.

-1: Failure, order greater than 3 detected.

-2: Failure, propensity zero without extinction.

Plotting

To plot the results on the screen, we can simply plot all species concentrations at all the time-points using:

>>> sim.plot()

[image: Plot of A, B and C species over time.]
A subset of the species can be plotted along with custom display names by supplying additional arguments to Simulation.plot as follows:

>>> sim.plot(species_names = ["A", "C"], new_names = ["Starting material", "Product"])

[image: Plot of A and B species over time.]
By default, calling the plot object returns the matplotlib figure and axis objects. To display the plot, we just do:

>>> sim.plot()
>>> import matplotlib.pyplot as plt
>>> plt.show()

Instead to save the figure directly to a file, we do:

>>> sim.plot()
>>> import matplotlib.pyplot as plt
>>> plt.savefig("plot.png")

	
Simulation.plot(species_names: list = None, new_names: list = None, thinning: int = 1)[source]

	Plot the simulation

	Parameters

	
	species_names (list, optional) – The names of the species to be plotted (list of str).
The default is None and plots all species.

	new_names (list, optional) – The names of the species to be plotted.
The default is "xi" for species i.

	thinning (int) – The parameter that controls the sampling
Eg. a value of 100 means that 1 point will be sampled every 100 steps
The default is 1 (every time-point is sampled)

	Returns

	
	fig (class ‘matplotlib.figure.Figure’) – Figure object of the generated plot.

	ax (class ‘matplotlib.axes._subplots.AxesSubplot) – Axis objected of the generated plot.

Note

	The sim.plot method needs to be run after running sim.simulate

	More detailed plots can be created manually by accessing the sim.results object

Accessing the results

The results of the simulation can be retrieved by accessing the Results object as

 >>> results = sim.results
 >>> results
 <Results species=('A', 'B', 'C') n_rep=10algorithm=direct sim_seeds=[8325804 1484405 2215104 5157699 8222403 7644169 5853461 6739698 374564
2832983]>

The Results object provides abstractions for easy retrieval and iteration over the simulation results. For example you can iterate over every run of the simulation using

>>> for x, t, status in results:
... pass

You can access the results of the n th run by

>>> nth_result = results[n]

You can also access the final states of all the simulation runs by

>>> final_times, final_states = results.final

final times of each repetition
>>> final_times
array([6.23502469, 7.67449057, 6.15181435, 8.95810706, 7.12055223,
 7.06535004, 6.07045973, 7.67547689, 9.4218006 , 9.00615099])

final states of each repetition
>>> final_states
array([[0, 0, 100],
 [0, 0, 100],
 [0, 0, 100],
 [0, 0, 100],
 [0, 0, 100],
 [0, 0, 100],
 [0, 0, 100],
 [0, 0, 100],
 [0, 0, 100],
 [0, 0, 100]])

You can obtain the state of the system at a particular time using the get_state method. For example to get the state of the system at time t=5.0 for each repetition:

>>> results.get_state(5.0)
[array([1, 4, 95]),
array([1, 2, 97]),
array([0, 2, 98]),
array([3, 4, 93]),
array([0, 3, 97]),
array([0, 2, 98]),
array([1, 1, 98]),
array([0, 4, 96]),
array([1, 6, 93]),
array([1, 3, 96])]

Additionally, you can also access a particular species’ trajectory through time across all simulations with the get_species function as follows:

>>> results.get_species(["A", "C"])

This will return a list with a numpy array for each repetition. We use a list here instead of higher dimensional ndarray for the following reason: any two repetitions of a stochastic simulation need not return the same number of time steps.

	
class cayenne.results.Results(species_names: List[str], rxn_names: List[str], t_list: List[numpy.ndarray], x_list: List[numpy.ndarray], status_list: List[int], algorithm: str, sim_seeds: List[int])[source]

	A class that stores simulation results and provides methods to access them

	Parameters

	
	species_names (List[str]) – List of species names

	rxn_names (List[str]) – List of reaction names

	t_list (List[float]) – List of time points for each repetition

	x_list (List[np.ndarray]) – List of system states for each repetition

	status_list (List[int]) – List of return status for each repetition

	algorithm (str) – Algorithm used to run the simulation

	sim_seeds (List[int]) – List of seeds used for the simulation

Notes

The status indicates the status of the simulation at exit. Each
repetition will have a status associated with it, and these are
accessible through the status_list.

1: Succesful completion, terminated when max_iter iterations reached.

2: Succesful completion, terminated when max_t crossed.

3: Succesful completion, terminated when all species went extinct.

-1: Failure, order greater than 3 detected.

-2: Failure, propensity zero without extinction.

	Results.__iter__()

	Iterate over each repetition

	Results.__len__()

	Return number of repetitions in simulation

	Results.__contains__(ind)

	Returns True if ind is one of the repetition numbers

	Results.__getitem__(ind)

	Return sim.

	Results.final

	Returns the final times and states of the system in the simulations

	Results.get_state(t)

	Returns the states of the system at time point t.

Algorithms

The Simulation class currently supports the following algorithms (see Algorithms):

	Gillespie’s direct method

	Tau leaping method

	Adaptive tau leaping method (experimental)

You can change the algorithm used to perform a simulation using the algorithm argument

>>> sim.simulate(max_t=150, max_iter=1000, n_rep=10, algorithm="tau_leaping")

 CLICK

 Algorithms

Algorithms

cayenne currently has 3 algorithms:

	Gillespie’s direct method (direct) (accurate, may be slow)

	Tau leaping method (tau_leaping) (approximate, faster, needs to be tuned)

	Adaptive tau leaping method (experimental, tau_adaptive) (approximate, faster, largely self-tuning)

Methods are described more in depth below.

Gillespie’s direct method (direct)

Implementation of Gillespie’s Direct method. This is an exact simulation
algorithm that simulates each reaction step. This makes it slower than
other methods, but it’s a good place to start.

	
class cayenne.algorithms.direct

	Runs the Direct Stochastic Simulation Algorithm 1

	Parameters

	
	react_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the reactants.
Reactions are columns and species are rows.

	prod_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the products.
Reactions are columns and species are rows.

	init_state ((ns,) ndarray) – A 1D array representing the initial state of the system.

	k_det ((nr,) ndarray) – A 1D array representing the deterministic rate constants of the
system.

	max_t (float) – The maximum simulation time to run the simulation for.

	max_iter (int) – The maximum number of iterations to run the simulation for.

	volume (float) – The volume of the reactor vessel which is important for second
and higher order reactions. Defaults to 1 arbitrary units.

	seed (int) – The seed for the numpy random generator used for the current run
of the algorithm.

	chem_flag (bool) – If True, divide by Na (Avogadro’s constant) while calculating
stochastic rate constants. Defaults to False.

	Returns

	
	t (ndarray) – Numpy array of the time points.

	x (ndarray) – Numpy array of the states of the system at times in in t.

	status (int) – Indicates the status of the simulation at exit.

1 - Succesful completion, terminated when max_iter iterations reached.

2 - Succesful completion, terminated when max_t crossed.

3 - Succesful completion, terminated when all species went extinct.

-1 - Failure, order greater than 3 detected.

-2 - Failure, propensity zero without extinction.

References

	1

	Gillespie, D.T., 1976.
A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.
doi:10.1016/0021-9991(76)90041-3.

Tau leaping method (tau_leaping)

Implementation of the
tau leaping algorithm [https://en.wikipedia.org/wiki/Tau-leaping].
This is an approximate method that needs to be tuned to the system at hand
(by modifying the time step given by the tau parameter).
A default tau=0.1 is assumed by
cayenne. This algorithm is approximate and faster than the Direct
algorithm, but it must be used with caution. Smaller time steps make the
simulation more accurate, but increase the code run time. Larger time steps
make the simulations less accurate but speeds up code run time.

	
class cayenne.algorithms.tau_leaping

	Runs the Tau Leaping Simulation Algorithm.
Exits if negative population encountered.

	Parameters

	
	react_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the reactants.
Reactions are columns and species are rows.

	prod_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the products.
Reactions are columns and species are rows.

	init_state ((ns,) ndarray) – A 1D array representing the initial state of the system.

	k_det ((nr,) ndarray) – A 1D array representing the deterministic rate constants of the
system.

	tau (float) – The constant time step used to tau leaping.

	max_t (float) – The maximum simulation time to run the simulation for.

	volume (float) – The volume of the reactor vessel which is important for second
and higher order reactions. Defaults to 1 arbitrary units.

	seed (int) – The seed for the numpy random generator used for the current run
of the algorithm.

	chem_flag (bool) – If True, divide by Na (Avogadro’s constant) while calculating
stochastic rate constants. Defaults to False.

	Returns

	
	t (ndarray) – Numpy array of the time points.

	x (ndarray) – Numpy array of the states of the system at times in in t.

	status (int) – Indicates the status of the simulation at exit.

1: Succesful completion, terminated when max_iter iterations reached.

2: Succesful completion, terminated when max_t crossed.

3: Succesful completion, terminated when all species went extinct.

-1: Failure, order greater than 3 detected.

-2: Failure, propensity zero without extinction.

-3: Negative species count encountered.

Adaptive tau leaping method (experimental, tau_adaptive)

Experimental implementation of the tau adaptive algorithm [https://doi.org/10.1063/1.2159468]. This is an approximate method that
builds off the tau_leaping method. It self-adapts the value of tau
over the course of the simulation. For systems with a small number of
molecules, it will be similar in speed to the direct method. For systems
with a large number of molecules, it will be much faster than the direct
method.

	
class cayenne.algorithms.tau_adaptive

	Runs the adaptive tau leaping simulation algorithm 2

	Parameters

	
	react_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the reactants.
Reactions are columns and species are rows.

	prod_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the products.
Reactions are columns and species are rows.

	init_state ((ns,) ndarray) – A 1D array representing the initial state of the system.

	k_det ((nr,) ndarray) – A 1D array representing the deterministic rate constants of the
system.

	hor – A 1D array of the highest order reaction in which each species
appears.

	nc (int) – The criticality threshold. Reactions with that cannot fire more than
nc times are deemed critical.

	epsilon (float) – The epsilon used in tau-leaping, measure of the bound on relative
change in propensity.

	max_t (float) – The maximum simulation time to run the simulation for.

	max_iter (int) – The maximum number of iterations to run the simulation for.

	volume (float) – The volume of the reactor vessel which is important for second
and higher order reactions. Defaults to 1 arbitrary units.

	seed (int) – The seed for the numpy random generator used for the current run
of the algorithm.

	chem_flag (bool) – If True, divide by Na (Avogadro’s constant) while calculating
stochastic rate constants. Defaults to False.

	Returns

	
	t (ndarray) – Numpy array of the time points.

	x (ndarray) – Numpy array of the states of the system at times in t.

	status (int) – Indicates the status of the simulation at exit.

1 - Succesful completion, terminated when max_iter iterations reached.

2 - Succesful completion, terminated when max_t crossed.

3 - Succesful completion, terminated when all species went extinct.

-1 - Failure, order greater than 3 detected.

-2 - Failure, propensity zero without extinction.

-3 - Negative species count encountered

References

	2

	Cao, Y., Gillespie, D.T., Petzold, L.R., 2006.
Efficient step size selection for the tau-leaping simulation
method. J. Chem. Phys. 124, 044109. doi:10.1063/1.2159468

 CLICK

 Examples

Examples

Here we discuss some example systems and how to code them up using cayenne.

Zero order system

\[\begin{split}\phi &\xrightarrow[]{k_1} A\\
\\
k_1 &= 1.1\\
A(t=0) &= 100\\\end{split}\]

This can be coded up with:

>>> from cayenne import Simulation
>>> model_str = """
 const compartment comp1;
 comp1 = 1.0; # volume of compartment

 r1: => A; k1;

 k1 = 1.1;
 chem_flag = false;

 A = 100;
 """
>>> sim = Simulation.load_model(model_str, "ModelString")
>>> sim.simulate()
>>> sim.plot()

[image: Plot of a zero order system.]

First order system

\[\begin{split}A &\xrightarrow[]{k_1} B\\
\\
k_1 &= 1.1\\
A(t=0) &= 100\\
B(t=0) &= 20\\\end{split}\]

This can be coded up with:

>>> from cayenne import Simulation
>>> model_str = """
 const compartment comp1;
 comp1 = 1.0; # volume of compartment

 r1: A => B; k1;

 k1 = 1.1;
 chem_flag = false;

 A = 100;
 B = 20;
 """
>>> sim = Simulation.load_model(model_str, "ModelString")
>>> sim.simulate()
>>> sim.plot()

[image: Plot of a first order system.]
Suppose you want to use the tau_leaping algorithm, run 20 repetitions and plot only species \(B\). Then do:

>>> sim.simulate(algorithm="tau_leaping", n_rep=20)
>>> sim.plot(species_names=["B"], new_names=["Species B"])

[image: Plot of a first order system with more repetitions.]

Enzyme kinetics (second order system with multiple reactions)

\[\begin{split}\text{Binding}: S + E &\xrightarrow{k1} SE \\
\text{Dissociation}:SE &\xrightarrow{k2} S + E \\
\text{Conversion}: SE &\xrightarrow{k3} P + E \\
\\
k1 &= 0.006 \\
k2 &= 0.005 \\
k3 &= 0.1 \\
S(t=0) &= 200\\
E(t=0) &= 50\\
SE(t=0) &= 0\\
P(t=0) &= 0\\\end{split}\]

This can be coded up with:

>>> from cayenne import Simulation
>>> model_str = """
 const compartment comp1;
 comp1 = 1.0; # volume of compartment

 binding: S + E => SE; k1;
 dissociation: SE => S + E; k2;
 conversion: SE => P + E; k3;

 k1 = 0.006;
 k2 = 0.005;
 k3 = 0.1;
 chem_flag = false;

 S = 200;
 E = 50;
 SE = 0;
 P = 0;
 """
>>> sim = Simulation.load_model(model_str, "ModelString")
>>> sim.simulate(max_t=50, n_rep=10)
>>> sim.plot()

[image: Plot of enzyme kinetics simulation.]
Since this is a second order system, the size of the system affects the reaction rates. What happens in a larger system?

>>> from cayenne import Simulation
>>> model_str = """
 const compartment comp1;
 comp1 = 5.0; # volume of compartment

 binding: S + E => SE; k1;
 dissociation: SE => S + E; k2;
 conversion: SE => P + E; k3;

 k1 = 0.006;
 k2 = 0.005;
 k3 = 0.1;
 chem_flag = false;

 S = 200;
 E = 50;
 SE = 0;
 P = 0;
 """
>>> sim = Simulation.load_model(model_str, "ModelString")
>>> sim.simulate(max_t=50, n_rep=10)
>>> sim.plot()

[image: Plot of enzyme kinetics simulation with a larger volume.]
Here we see that the reaction proceeds slower. Less of the product is formed by t=50 compared to the previous case.

 CLICK

 Contributing

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/dileep-kishore/cayenne/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Stochastic Simulation Algorithms in Python could always use more documentation, whether as part of the
official Stochastic Simulation Algorithms in Python docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dileep-kishore/cayenne/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up cayenne for local development.

	Fork the cayenne repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/cayenne.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv cayenne
$ cd cayenne/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 cayenne tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/dileep-kishore/cayenne/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_cayenne

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

 CLICK

 Credits

Credits

Development Lead

	Dileep Kishore <k.dileep1994@gmail.com>

	Srikiran Chandrasekaran <srikiranc@gmail.com>

Contributors

None yet. Why not be the first?

 CLICK

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cayenne	

 	
 	
 cayenne.algorithms	

 	
 	
 cayenne.algorithms.direct	

 	
 	
 cayenne.algorithms.tau_adaptive	

 	
 	
 cayenne.algorithms.tau_leaping	

 	
 	
 cayenne.model_io	

 	
 	
 cayenne.results	

 	
 	
 cayenne.simulation	

 	
 	
 cayenne.utils	

 CLICK

 Index

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	args (cayenne.model_io.ModelIO attribute)

C

 	
 	cayenne (module)

 	cayenne.algorithms (module)

 	cayenne.algorithms.direct (module), [1]

 	cayenne.algorithms.tau_adaptive (module), [1]

 	cayenne.algorithms.tau_leaping (module), [1]

 	
 	cayenne.model_io (module)

 	cayenne.results (module)

 	cayenne.simulation (module)

 	cayenne.utils (module)

 	chem_flag (cayenne.model_io.ModelIO attribute)

 	ChemFlagError

D

 	
 	direct (class in cayenne.algorithms)

 	(in module cayenne.algorithms.direct)

F

 	
 	final (cayenne.results.Results attribute)

G

 	
 	get_kstoc (in module cayenne.utils)

 	
 	get_species() (cayenne.results.Results method)

 	get_state() (cayenne.results.Results method)

H

 	
 	HOR (cayenne.simulation.Simulation attribute)

I

 	
 	init_state (cayenne.model_io.ModelIO attribute)

 	
 	InitialStateError

K

 	
 	k_det (cayenne.model_io.ModelIO attribute)

L

 	
 	load_model() (cayenne.simulation.Simulation class method)

M

 	
 	ModelError

 	
 	ModelIO (class in cayenne.model_io)

P

 	
 	plot() (cayenne.simulation.Simulation method), [1]

 	
 	prod_stoic (cayenne.model_io.ModelIO attribute)

 	py_roulette_selection (in module cayenne.utils)

R

 	
 	RateConstantError

 	react_stoic (cayenne.model_io.ModelIO attribute)

 	
 	results (cayenne.simulation.Simulation attribute), [1], [2]

 	Results (class in cayenne.results), [1]

S

 	
 	simulate() (cayenne.simulation.Simulation method), [1]

 	
 	Simulation (class in cayenne.simulation), [1]

T

 	
 	tau_adaptive (class in cayenne.algorithms)

 	(in module cayenne.algorithms.tau_adaptive)

 	
 	tau_leaping (class in cayenne.algorithms)

 	(in module cayenne.algorithms.tau_leaping)

 	translate_sbml() (cayenne.model_io.ModelIO class method)

V

 	
 	volume (cayenne.model_io.ModelIO attribute)

 	
 	VolumeError

W

 	
 	wrapper() (in module cayenne.simulation)

 CLICK

 cayenne.algorithms package

cayenne.algorithms package

Submodules

cayenne.algorithms.direct.cpython-36m-x86_64-linux-gnu module

cayenne.algorithms.direct.cpython-37m-x86_64-linux-gnu module

cayenne.algorithms.direct module

Implementation of Gillespie’s Direct method. This is an exact simulation
algorithm that simulates each reaction step. This makes it slower than
other methods, but it’s a good place to start.

	
cayenne.algorithms.direct.direct

	Runs the Direct Stochastic Simulation Algorithm 1

	Parameters

	
	react_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the reactants.
Reactions are columns and species are rows.

	prod_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the products.
Reactions are columns and species are rows.

	init_state ((ns,) ndarray) – A 1D array representing the initial state of the system.

	k_det ((nr,) ndarray) – A 1D array representing the deterministic rate constants of the
system.

	max_t (float) – The maximum simulation time to run the simulation for.

	max_iter (int) – The maximum number of iterations to run the simulation for.

	volume (float) – The volume of the reactor vessel which is important for second
and higher order reactions. Defaults to 1 arbitrary units.

	seed (int) – The seed for the numpy random generator used for the current run
of the algorithm.

	chem_flag (bool) – If True, divide by Na (Avogadro’s constant) while calculating
stochastic rate constants. Defaults to False.

	Returns

	
	t (ndarray) – Numpy array of the time points.

	x (ndarray) – Numpy array of the states of the system at times in in t.

	status (int) – Indicates the status of the simulation at exit.

1 - Succesful completion, terminated when max_iter iterations reached.

2 - Succesful completion, terminated when max_t crossed.

3 - Succesful completion, terminated when all species went extinct.

-1 - Failure, order greater than 3 detected.

-2 - Failure, propensity zero without extinction.

References

	1

	Gillespie, D.T., 1976.
A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.
doi:10.1016/0021-9991(76)90041-3.

cayenne.algorithms.tau_adaptive.cpython-36m-x86_64-linux-gnu module

cayenne.algorithms.tau_adaptive.cpython-37m-x86_64-linux-gnu module

cayenne.algorithms.tau_adaptive module

Experimental implementation of the tau adaptive algorithm [https://doi.org/10.1063/1.2159468]. This is an approximate method that
builds off the tau_leaping method. It self-adapts the value of tau
over the course of the simulation. For systems with a small number of
molecules, it will be similar in speed to the direct method. For systems
with a large number of molecules, it will be much faster than the direct
method.

	
cayenne.algorithms.tau_adaptive.tau_adaptive

	Runs the adaptive tau leaping simulation algorithm 2

	Parameters

	
	react_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the reactants.
Reactions are columns and species are rows.

	prod_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the products.
Reactions are columns and species are rows.

	init_state ((ns,) ndarray) – A 1D array representing the initial state of the system.

	k_det ((nr,) ndarray) – A 1D array representing the deterministic rate constants of the
system.

	hor – A 1D array of the highest order reaction in which each species
appears.

	nc (int) – The criticality threshold. Reactions with that cannot fire more than
nc times are deemed critical.

	epsilon (float) – The epsilon used in tau-leaping, measure of the bound on relative
change in propensity.

	max_t (float) – The maximum simulation time to run the simulation for.

	max_iter (int) – The maximum number of iterations to run the simulation for.

	volume (float) – The volume of the reactor vessel which is important for second
and higher order reactions. Defaults to 1 arbitrary units.

	seed (int) – The seed for the numpy random generator used for the current run
of the algorithm.

	chem_flag (bool) – If True, divide by Na (Avogadro’s constant) while calculating
stochastic rate constants. Defaults to False.

	Returns

	
	t (ndarray) – Numpy array of the time points.

	x (ndarray) – Numpy array of the states of the system at times in t.

	status (int) – Indicates the status of the simulation at exit.

1 - Succesful completion, terminated when max_iter iterations reached.

2 - Succesful completion, terminated when max_t crossed.

3 - Succesful completion, terminated when all species went extinct.

-1 - Failure, order greater than 3 detected.

-2 - Failure, propensity zero without extinction.

-3 - Negative species count encountered

References

	2

	Cao, Y., Gillespie, D.T., Petzold, L.R., 2006.
Efficient step size selection for the tau-leaping simulation
method. J. Chem. Phys. 124, 044109. doi:10.1063/1.2159468

cayenne.algorithms.tau_leaping.cpython-36m-x86_64-linux-gnu module

cayenne.algorithms.tau_leaping.cpython-37m-x86_64-linux-gnu module

cayenne.algorithms.tau_leaping module

Implementation of the
tau leaping algorithm [https://en.wikipedia.org/wiki/Tau-leaping].
This is an approximate method that needs to be tuned to the system at hand
(by modifying the time step given by the tau parameter).
A default tau=0.1 is assumed by
cayenne. This algorithm is approximate and faster than the Direct
algorithm, but it must be used with caution. Smaller time steps make the
simulation more accurate, but increase the code run time. Larger time steps
make the simulations less accurate but speeds up code run time.

	
cayenne.algorithms.tau_leaping.tau_leaping

	Runs the Tau Leaping Simulation Algorithm.
Exits if negative population encountered.

	Parameters

	
	react_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the reactants.
Reactions are columns and species are rows.

	prod_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the products.
Reactions are columns and species are rows.

	init_state ((ns,) ndarray) – A 1D array representing the initial state of the system.

	k_det ((nr,) ndarray) – A 1D array representing the deterministic rate constants of the
system.

	tau (float) – The constant time step used to tau leaping.

	max_t (float) – The maximum simulation time to run the simulation for.

	volume (float) – The volume of the reactor vessel which is important for second
and higher order reactions. Defaults to 1 arbitrary units.

	seed (int) – The seed for the numpy random generator used for the current run
of the algorithm.

	chem_flag (bool) – If True, divide by Na (Avogadro’s constant) while calculating
stochastic rate constants. Defaults to False.

	Returns

	
	t (ndarray) – Numpy array of the time points.

	x (ndarray) – Numpy array of the states of the system at times in in t.

	status (int) – Indicates the status of the simulation at exit.

1: Succesful completion, terminated when max_iter iterations reached.

2: Succesful completion, terminated when max_t crossed.

3: Succesful completion, terminated when all species went extinct.

-1: Failure, order greater than 3 detected.

-2: Failure, propensity zero without extinction.

-3: Negative species count encountered.

Module contents

 CLICK

 cayenne package

cayenne package

Subpackages

	cayenne.algorithms package
	Submodules

	cayenne.algorithms.direct.cpython-36m-x86_64-linux-gnu module

	cayenne.algorithms.direct.cpython-37m-x86_64-linux-gnu module

	cayenne.algorithms.direct module

	cayenne.algorithms.tau_adaptive.cpython-36m-x86_64-linux-gnu module

	cayenne.algorithms.tau_adaptive.cpython-37m-x86_64-linux-gnu module

	cayenne.algorithms.tau_adaptive module

	cayenne.algorithms.tau_leaping.cpython-36m-x86_64-linux-gnu module

	cayenne.algorithms.tau_leaping.cpython-37m-x86_64-linux-gnu module

	cayenne.algorithms.tau_leaping module

	Module contents

Submodules

cayenne.model_io module

The class that handles model IO

	
exception cayenne.model_io.ChemFlagError[source]

	Bases: cayenne.model_io.ModelError

	
exception cayenne.model_io.InitialStateError[source]

	Bases: cayenne.model_io.ModelError

	
exception cayenne.model_io.ModelError[source]

	Bases: Exception

	
class cayenne.model_io.ModelIO(model_contents: str, content_type: str)[source]

	Bases: object

Class for loading and parsing models

	Parameters

	
	model_contents (str) – Either the model string or the file path

	content_type (str, {"ModelString", "ModelFile"}) – The type of the model

	
react_stoic

	A 2D array of the stoichiometric coefficients of the reactants.
Reactions are columns and species are rows.

	Type

	(ns, nr) ndarray

	
prod_stoic

	A 2D array of the stoichiometric coefficients of the products.
Reactions are columns and species are rows.

	Type

	(ns, nr) ndarray

	
init_state

	A 1D array representing the initial state of the system.

	Type

	(ns,) ndarray

	
k_det

	A 1D array representing the deterministic rate constants of the
system.

	Type

	(nr,) ndarray

	
volume

	The volume of the reactor vessel which is important for second
and higher order reactions. Defaults to 1 arbitrary units.

	Type

	float, optional

	
chem_flag

	If True, divide by Na (Avogadro’s constant) while calculating
stochastic rate constants. Defaults to False.

	Type

	bool, optional

	
args

	Returns the attributes of the ModelIO class

	
classmethod translate_sbml(sbml_file: str)[source]

	Translate SBML file to Antimony model specification.
cayenne’s model specification is loosely based on Antimony’s model
specification.

	
exception cayenne.model_io.RateConstantError[source]

	Bases: cayenne.model_io.ModelError

	
exception cayenne.model_io.VolumeError[source]

	Bases: cayenne.model_io.ModelError

cayenne.results module

Module that defines the Results class

	
class cayenne.results.Results(species_names: List[str], rxn_names: List[str], t_list: List[numpy.ndarray], x_list: List[numpy.ndarray], status_list: List[int], algorithm: str, sim_seeds: List[int])[source]

	Bases: collections.abc.Collection

A class that stores simulation results and provides methods to access them

	Parameters

	
	species_names (List[str]) – List of species names

	rxn_names (List[str]) – List of reaction names

	t_list (List[float]) – List of time points for each repetition

	x_list (List[np.ndarray]) – List of system states for each repetition

	status_list (List[int]) – List of return status for each repetition

	algorithm (str) – Algorithm used to run the simulation

	sim_seeds (List[int]) – List of seeds used for the simulation

Notes

The status indicates the status of the simulation at exit. Each
repetition will have a status associated with it, and these are
accessible through the status_list.

1: Succesful completion, terminated when max_iter iterations reached.

2: Succesful completion, terminated when max_t crossed.

3: Succesful completion, terminated when all species went extinct.

-1: Failure, order greater than 3 detected.

-2: Failure, propensity zero without extinction.

	
final

	Returns the final times and states of the system in the simulations

	Returns

	The final times and states of the sytem

	Return type

	Tuple[np.ndarray, np.ndarray]

	
get_species(species_names: List[str]) → List[numpy.ndarray][source]

	Returns the species concentrations only for the species in species_names

	Parameters

	species_names (List[str]) – The names of the species as a list

	Returns

	Simulation output of the selected species.

	Return type

	List[np.ndarray]

	
get_state(t: float) → List[numpy.ndarray][source]

	Returns the states of the system at time point t.

	Parameters

	t (float) – Time point at which states are wanted.

	Returns

	The states of the system at t for all repetitions.

	Return type

	List[np.ndarray]

	Raises

	UserWarning – If simulation ends before t but system does not reach
extinction.

cayenne.simulation module

The main class for running stochastic simulation

	
class cayenne.simulation.Simulation(species_names: List[str], rxn_names: List[str], react_stoic: numpy.ndarray, prod_stoic: numpy.ndarray, init_state: numpy.ndarray, k_det: numpy.ndarray, chem_flag: bool = False, volume: float = 1.0)[source]

	Bases: object

A main class for running simulations.

	Parameters

	
	species_names (List[str]) – List of species names

	rxn_names (List[str]) – List of reaction names

	react_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the reactants.
Reactions are columns and species are rows.

	prod_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the products.
Reactions are columns and species are rows.

	init_state ((ns,) ndarray) – A 1D array representing the initial state of the system.

	k_det ((nr,) ndarray) – A 1D array representing the deterministic rate constants of the
system.

	volume (float, optional) – The volume of the reactor vessel which is important for second
and higher order reactions. Defaults to 1 arbitrary units.

	chem_flag (bool, optional) – If True, divide by Na (Avogadro’s constant) while calculating
stochastic rate constants. Defaults to False.

	
results

	The results instance

	Type

	Results

	Raises

	ValueError – If supplied with order > 3.

Examples

>>> V_r = np.array([[1,0],[0,1],[0,0]])
>>> V_p = np.array([[0,0],[1,0],[0,1]])
>>> X0 = np.array([10,0,0])
>>> k = np.array([1,1])
>>> sim = Simulation(V_r, V_p, X0, k)

Notes

Stochastic reaction rates depend on the size of the system for second
and third order reactions. By this, we mean the volume of the system in
which the reactants are contained. Intuitively, this makes sense
considering that collisions between two or more molecules becomes
rarer as the size of the system increases. A detailed mathematical
treatment of this idea can be found in 3 .

In practice, this means that volume and chem_flag need to be
supplied for second and third order reactions. volume
represents the size of the system containing the reactants.

In chemical systems chem_flag should generally be set to True
as k_det is specified in units of molarity or M or mol/L.
For example, a second order rate constant could be = 0.15 mol / (L s).
Then Avogadro’s constant (\(N_a\)) is used for normalization while
computing k_stoc (\(c_\mu\) in 3) from k_det.

In biological systems, chem_flag should be generally be set to
False as k_det is specified in units of copies/L or CFU/L.
For example, a second order rate constant could be = 0.15 CFU / (L s).

References

	3(1,2)

	Gillespie, D.T., 1976.
A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.
doi:10.1016/0021-9991(76)90041-3.

	
HOR

	Determine the HOR vector. HOR(i) is the highest order of reaction
in which species S_i appears as a reactant.

	Returns

	HOR – Highest order of the reaction for the reactive species as
defined under Eqn. (27) of 1. HOR can be 1, 2 or 3
if the species appears only once in the reactants.
If HOR is -2, it appears twice in a second order reaction.
If HOR is -3, it appears thrice in a third order reaction.
If HOR is -32, it appears twice in a third order reaction.
The corresponding value of g_i in Eqn. (27) is handled
by tau_adaptive.

	Return type

	np.ndarray

References

	1

	Cao, Y., Gillespie, D.T., Petzold, L.R., 2006.
Efficient step size selection for the tau-leaping simulation
method. J. Chem. Phys. 124, 044109. doi:10.1063/1.2159468

	
classmethod load_model(contents: str, contents_type: str) → cayenne.simulation.Simulation[source]

	Load model contents into a Simulation object

	Parameters

	
	model_contents (str) – Either the model string or the file path

	content_type (str, {"ModelString", "ModelFile"}) – The type of the model

	Returns

	sim – An instance of the Simulation class.

	Return type

	Simulation

	
plot(species_names: list = None, new_names: list = None, thinning: int = 1)[source]

	Plot the simulation

	Parameters

	
	species_names (list, optional) – The names of the species to be plotted (list of str).
The default is None and plots all species.

	new_names (list, optional) – The names of the species to be plotted.
The default is "xi" for species i.

	thinning (int) – The parameter that controls the sampling
Eg. a value of 100 means that 1 point will be sampled every 100 steps
The default is 1 (every time-point is sampled)

	Returns

	
	fig (class ‘matplotlib.figure.Figure’) – Figure object of the generated plot.

	ax (class ‘matplotlib.axes._subplots.AxesSubplot) – Axis objected of the generated plot.

	
results

	The Results instance of the simulation

	Returns

	

	Return type

	Optional[Results]

	
simulate(max_t: float = 10.0, max_iter: int = 1000, seed: int = 0, n_rep: int = 1, n_procs: Optional[int] = 1, algorithm: str = 'direct', debug: bool = False, **kwargs) → None[source]

	Run the simulation

	Parameters

	
	max_t (float, optional) – The end time of the simulation.
The default is 10.0.

	max_iter (int, optional) – The maximum number of iterations of the simulation loop.
The default is 1000 iterations.

	seed (int, optional) – The seed used to generate simulation seeds.
The default value is 0.

	n_rep (int, optional) – The number of repetitions of the simulation required.
The default value is 1.

	n_procs (int, optional) – The number of cpu cores to use for the simulation.
Use None to automatically detect number of cpu cores.
The default value is 1.

	algorithm (str, optional) – The algorithm to be used to run the simulation.
The default value is "direct".

Notes

The status indicates the status of the simulation at exit. Each
repetition will have a status associated with it, and these are
accessible through the Simulation.results.status_list.

	status: int

	Indicates the status of the simulation at exit.

1: Succesful completion, terminated when max_iter iterations reached.

2: Succesful completion, terminated when max_t crossed.

3: Succesful completion, terminated when all species went extinct.

-1: Failure, order greater than 3 detected.

-2: Failure, propensity zero without extinction.

	
cayenne.simulation.wrapper(x, func)[source]

	

cayenne.utils.cpython-36m-x86_64-linux-gnu module

cayenne.utils module

Contains various utility functions

	
cayenne.utils.get_kstoc

	Compute k_stoc from k_det.

Return a vector of the stochastic rate constants (k_stoc) determined
from the deterministic rate constants (k_det) 2

	Parameters

	
	react_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of the reactants.
Reactions are columns and species are rows.

	k_det ((nr,) ndarray) – A 1D array representing the deterministic rate constants of the
system.

	volume (float) – The volume of the reactor vessel which is important for second
and higher order reactions

	chem_flag (bool) – If True, divide by Na (Avogadro’s constant) while calculating
stochastic rate constants. Defaults to False.

	Returns

	k_stoc – A 1D array representing the stochastic rate constants of the
system.

	Return type

	(nr,) ndarray

References

	2

	Gillespie, D.T., 1976.
A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions. J. Comput. Phys. 22, 403–434.
doi:10.1016/0021-9991(76)90041-3.

	
cayenne.utils.py_roulette_selection

	Perform roulette selection on the list of propensities.

Return the index of the selected reaction (choice) by performing
Roulette selection on the given list of reaction propensities.

	Parameters

	
	prop_list (array_like) – A 1D array of the propensities of the reactions.

	Xt (array_like) – A 1D array of the current simulation state.

	Returns

	
	choice (int) – Index of the chosen reaction.

	status (int) – Status of the simulation as described in direct.

Module contents

Top-level pa